کاربردهای منطق فازی‌

منطق فازی و کاربرد آن

فازی و کاربردهای آن

کاربردهای منطق فازی‌

منطق فازی کاربردهای متعددی دارد. ساده‌ترین نمونه یک سیستم کنترل دما یا ترموستات است که بر اساس قوانین فازی کار می‌کند. سال‌هاست که از  منطق فازی برای کنترل دمای آب یا میزان کدرشدن آبی که لباس‌ها در آن شسته شده‌اند در ساختمان اغلب ماشین‌های لباسشویی استفاده می‌شود.

امروزه ماشین‌های ظرفشویی و بسیاری از دیگر لوازم خانگی نیز از این تکنیک استفاده می‌کنند. منطق فازی در صنعت خودروسازی نیز کاربردهای فروانی دارد. مثلاً سیستم ترمز و ABS در برخی از خودروها از منطق فازی استفاده می‌کند. یکی از معروف‌ترین نمونه‌های به‌کارگیری منطق فازی در سیستم‌های ترابری جهان، شبکه مونوریل (قطار تک ریل) توکیو در ژاپن است. سایر سیستم‌های حرکتی و جابه‌جایی بار، مثل آسانسورها نیز از منطق فازی استفاده می‌کنند.

سیستم‌های تهویه هوا نیز به وفور منطق فازی را به‌کار می‌گیرند. از منطق فازی در سیستم‌های پردازش تصویر نیز استفاده می‌شود. یک نمونه از این نوع کاربردها را می‌توانید در سیستم‌های «تشخیص لبه و مرز» اجسام و تصاویر مشاهده کنید که در روباتیک نیز کاربردهایی دارد. به طور کلی خیلی از مواقع در ساختمان سیستم‌های تشخیص الگوها (Pattern Recognition) مثل سیستم‌های تشخیص گفتار و پردازش تصویر از منطق فازی استفاده می‌شود.

فازی

فازی

تفاوت میان نظریه احتمالات و منطق فازی

تفاوت فازی و احتمالات

تفاوت فازی و احتمالات

یکی از مباحث مهم در منطق فازی، تمیزدادن آن از نظریه احتمالات در علم ریاضیات است. غالباً نظریه فازی با نظریه احتمالات اشتباه می‌شود. در حالی که این دو مفهوم کاملاً با یکدیگر متفاوتند. این موضوع به قدری مهم است که حتی برخی از دانشمندان بزرگ علم ریاضیات در دنیا – به‌ویژه کشورهای غربی – درمورد آن با یکدیگر بحث دارند و جالب آن که هنوز هم ریاضیدانانی وجود دارند که با منطق فازی مخالفند و آن را یک سوء تعبیر از نظریه احتمالات تفسیر می‌کنند.
از نگاه این ریاضیدانان، منطق فازی چیزی نیست جز یک برداشت نادرست از نظریه احتمالات که به گونه‌ای غیرقابل قبول،مقادیرواندازه‌گیری‌های نادقیق را واردعلوم ریاضیات ،مهندسی وکنترل کرده است.بعضی نیزمانندBruno de Finetti معتقدند فقط یک نوع توصیف از مفهوم عدم‌قطعیت در علم ریاضیات کافی است و چون علم آمار و احتمالات وجود دارد، نیازی به مراجعه به منطق فازی نیست.

با این حال، اکثریت طرفداران نظریه منطق فازی، کارشناسان و متخصصانی هستند که به طور مستقیم یا غیرمستقیم با علم مهندسی کنترل سروکار دارند. حتی تعدادی از پیروان منطق فازی همچون بارت کاسکو تا آنجا پیش می‌روند که احتمالات را شاخه و زیرمجموعه‌ای از منطق فازی می‌نامند.

توضیح تفاوت میان این دو نظریه البته کار چندان دشواری نیست. منطق فازی با حقایق نادقیق سروکار دارد و به حدود و درجات یک واقعیت اشاره دارد؛ حال آن‌که نظریه احتمالات بر شالوده مجموعه حالات تصادفیِ یک پدیده استوار است و درباره شانس وقوع یک حالت خاص صحبت می‌کند؛ حالتی که وقتی اتفاق بیفتد، دقیق فرض می‌شود. ذکر یک مثال می‌تواند موضوع را روشن کند. فرض کنید در حال رانندگی در یک خیابان هستید. اتفاقاً متوجه می‌شوید که کودکی در اتومبیل دیگری که به موازات شما در حال حرکت است، نشسته و سر و یک دست خود را از پنجره ماشین بیرون آورده و در حال بازی‌گوشی است. این وضعیت واقعی است و نمی‌توان گفت احتمال این‌که بدن این کودک بیرون اتومبیل باشد، چقدر است.

چون بدن او واقعاً بیرون ماشین است، با این توضیح که بدن او کاملاً بیرون نیست، بلکه فقط بخشی از بدن او در خارج اتومبیل قرارگرفته است. تئوری احتمالات در اینجا کاربردی ندارد. چون ما نمی‌توانیم از احتمال خارج بودن بدن کودک از ماشین صحبت کنیم؛ زیرا آشکارا فرض غلطی است. اما می‌توانیم از احتمال وقوع حادثه‌ صحبت کنیم. مثلاً هرچه بدن کودک بیشتر بیرون باشد، احتمال این‌که در اثر برخورد با بدنه یک اتومبیل در حال حرکت دچار آسیب شود، بیشتر می‌شود. این حادثه هنوز اتفاق نیفتاده است، ولی می‌توانیم از احتمال وقوع آن صحبت کنیم. اما بیرون بودن تن کودک از ماشین همین حالا به واقعیت تبدیل شده است و فقط می‌توانیم از میزان و درجات آن صحبت کنیم.

تفاوت ظریف و در عین حال پررنگی میان نظریه احتمالات و نظریه فازی وجود دارد که اگر دقت نکنیم، دچار اشتباه می‌شویم؛ زیرا این دو نظریه معمولاً در کنار یکدیگر و در مورد اشیای مختلف همزمان مصداق‌هایی پیدا می‌کنند. هنگامی که به یک پدیده می‌نگریم، نوع نگاه ما به آن پدیده می‌تواند تعیین کند که باید درباره احتمالات صحبت کنیم یا منطق فازی. در مثال فوق موضوع دغدغه ما کودکی است که در حال بازی گوشی است. اما یک وقت نگران این هستیم که تا چه اندازه خطر او را تهدید می‌کند. خطری که هنوز به وقوع نپیوسته است. یک وقت هم ممکن است نگران باشیم که بدن او چقدر بیرون پنجره است. واقعیتی که هم‌اکنون به وقوع پیوسته است.

یک دیدگاه درباره علت بحث و جدل علمی میان دانشمندان این است که برخی از ریاضیدانان اتکا به علم آمار و احتمال را کافی می‌دانند و نظریه فازی را یک برداشت غیرکارآمد از جهان درباره ما تلقی می‌کنند. به عنوان مثال، اگر به مورد کودک و اتومبیل مراجعه کنیم، این پرسش مطرح می‌شود که اگر نگرانی و دغدغه نهایی ما احتمال وقوع حادثه است، دیگر چه نیازی به این است که ما درباره درجات «بیرون بودن تن کودک از اتومبیل» صحبت کنیم؟

بحث درباره ابعاد فلسفی منطق فازی بسیار شیرین و البته گسترده است. متأسفانه مجال برای طرح گستردهِ ابعاد فلسفی منطق فازی در این مقاله وجود ندارد. از این رو اگر مایل به مطالعه بیشتر در این زمینه هستید، کتاب بسیاری خواندنی “تفکر فازی” را که در پی‌نوشت دوم انتهای مقاله معرفی کرده‌ام، توصیه می‌کنم.

منطق فازی (Fuzzy Logic)

در این پست قصد داریم به منطق فازی ، تاریخچه آنو اهمیت آن در علم هوش مصنوعی بپردازیم.

پیشینه منطق فازی

تئوری مجموعه‌های فازی و منطق فازی (Fuzzy Logic) را اولین بار پرفسور لطفی‌زاده در رساله‌ای به نام «مجموعه‌های فازی، اطلاعات و کنترل» در سال ۱۹۶۵ معرفی نمود. هدف اولیه او در آن زمان، توسعه مدلی کارآمدتر برای توصیف فرآیند پردازش زبان‌های طبیعی بود. او مفاهیم و اصلاحاتی همچون مجموعه‌های فازی، رویدادهای فازی، اعداد فازی و فازی‌سازی را وارد علوم ریاضیات و مهندسی نمود. از آن زمان تاکنون، پرفسور لطفی زاده به دلیل معرفی نظریه بدیع و سودمند منطق فازی و تلاش‌هایش در این زمینه، موفق به کسب جوایز بین‌المللی متعددی شده است.

منطق فازی

منطق فازی

پس از معرفی منطق فازی به دنیای علم، در ابتدا مقاومت‌های بسیاری دربرابر پذیرش این نظریه صورت گرفت . بخشی از این مقاومت‌ها، چنان که ذکر شد، ناشی از برداشت‌های نادرست از منطق فازی و کارایی آن بود. جالب این‌که، منطق فازی در سال‌های نخست تولدش بیشتر در دنیای مشرق زمین، به‌ویژه کشور ژاپن با استقبال روبه‌رو شد، اما استیلای اندیشه کلاسیک صفر و یک در کشورهای مغرب زمین، اجازه رشد اندکی به این نظریه داد. با این حال به تدریج که این علم کاربردهایی پیدا کرد و وسایل الکترونیکی و دیجیتالی جدیدی وارد بازار شدند که بر اساس منطق فازی کارمی‌کردند، مخالفت‌ها نیز اندک اندک کاهش یافتند.

در ژاپن استقبال از منطق فازی، عمدتاً به کاربرد آن در روباتیک و هوش مصنوعی مربوط می‌شود. موضوعی که یکی از نیروهای اصلی پیش‌برندهِ این علم طی چهل سال گذشته بوده است. در حقیقت می‌توان گفت بخش بزرگی از تاریخچه دانش هوش مصنوعی، با تاریخچه منطق فازی همراه و هم‌داستان است.

مجموعه‌های فازی

بنیاد منطق فازی بر شالوده نظریه مجموعه‌های فازی استوار است. این نظریه تعمیمی از نظریه کلاسیک مجموعه‌ها در علم ریاضیات است. در تئوری کلاسیک مجموعه‌ها، یک عنصر، یا عضو مجموعه است یا نیست. در حقیقت عضویت عناصر از یک الگوی صفر و یک و باینری تبعیت می‌کند. اما تئوری مجموعه‌های فازی این مفهوم را بسط می‌دهد و عضویت درجه‌بندی شده را مطرح می‌کند.

به این ترتیب که یک عنصر می‌تواند تا درجاتی – و نه کاملاً – عضو یک مجموعه باشد. مثلاً این جمله که «آقای الف به اندازه هفتاددرصد عضو جامعه بزرگسالان است»از دید تئوری مجموعه‌های فازی صحیح است. در این تئوری، عضویت اعضای مجموعه از طریق تابع (u‌(x مشخص می‌شود که x نمایانگر یک عضو مشخص و u تابعی فازی است که درجه عضویت ‌x در مجموعه مربوطه را تعیین می‌کند و مقدار آن بین صفر و یک است .

به بیان دیگر، (‌u‌(x نگاشتی از مقادیر x به مقادیر عددی ممکن بین صفرویک را می‌سازد. تابع (‌u‌(x ممکن است مجموعه‌ای از مقادیر گسسته (Discrete) یا پیوسته باشد. وقتی که u  فقط تعدادی از مقادیر گسسته بین صفر و یک را تشکیل می‌دهد، مثلاً ممکن است شامل اعداد ۳/۰ و ۵/۰ و ۷/۰ و ۹/۰ و صفر و یک باشد. اما وقتی مجموعه مقادیرu  پیوسته باشند، یک منحنی پیوسته از اعداد اعشاری بین صفر و یک تشکیل می‌شود.

بکارگیری منطق فازی

منطق فازی  را از طریق قوانینی که «عملگرهای فازی» نامیده می‌شوند،می‌توان به‌کار گرفت. این قوانین معمولاً بر اساس مدل زیر تعریف می‌شوند :                                                  

If Variable Is set Then Action

به عنوان مثال فرض کنید می‌خواهیم یک توصیف فازی از دمای یک اتاق ارائه دهیم. در این صورت می‌توانیم چند مجموعه فازی تعریف کنیم که از الگوی تابع (‌u‌(x تبعیت کند. شکل ۳ نموداری از نگاشت متغیر «دمای هو» به چند مجموعه‌ فازی با نام‌های “سرد”، “خنک”، “عادی”، “گرم” و “داغ” است. چنان که ملاحظه می‌کنید، یک درجه حرارت معین ممکن است متعلق به یک یا دو مجموعه باشد.

به عنوان نمونه، درجه حرارت‌های بین دمای T1 و T2 هم متعلق به مجموعه “سرد” و هم متعلق به مجموعه “خنک” است. اما درجه عضویت یک دمای معین در این فاصله، در هر یک از دو مجموعه متفاوت است. به طوری که دمای نزدیک  ‌T2 تنها به اندازه چند صدم در مجموعه “سرد” عضویت دارد، اما نزدیک نوددرصد در مجموعه “خنک” عضویت دارد.

تعریف حالات مختلف بر اساس قانون فازی

اکنون می‌توان بر اساس مدل فوق قانون فازی زیر را تعریف کرد:

  • اگر دمای اتاق <خیلی گرم> است، سرعت پنکه را <خیلی زیاد> کن.
  • اگر دمای اتاق <گرم> است، سرعت پنکه را <زیاد> کن.
  • اگر دمای اتاق <معتدل> است، سرعت پنکه را در <همین اندازه> نگه‌دار.
  • اگر دمای اتاق <خنک> است، سرعت پنکه را <کم> کن.
  • اگر دمای اتاق <سرد> است، پنکه را <خاموش> کن.

اگر این قانون فازی را روی یک سیستم کنترل دما اعمال کنیم، آن‌گاه می‌توانیم دماسنجی بسازیم که دمای اتاق را به صورت خودکار و طبق قانون ما، کنترل می‌کند. اما این سؤال پیش می‌آید که اگر دو یا چند قانون همزمان برای یک متغیر ورودی فعال شود چه اتفاقی خواهد افتاد؟ فرض کنید دمای اتاق برابر Tx1‌ است در این صورت هم قانون مربوط به اتاق گرم و هم قانون مربوط به دمای اتاق معتدل صادق است و مقادیر U1 و U2 به ترتیب به دست می‌آید.

طبق کدام قانون باید عمل کرد؟ لطفی‌زاده خود پاسخ این معما را نداد. در سال ۱۹۷۵ دو دانشمند منطق فازی به نام ممدانی (Mamdani) و آسیلیان اولین کنترل فازی واقعی را طراحی کردند. آنان پاسخ این معما را با محاسبهِ نقطه ثقل (C) مساحتی که از ترکیب دو ذوزنقه زیر U1 و U2 در شکل ۴ پدید آمده و نگاشت آن به محور t و به دست آوردن مقدار Tx2 حل کردند.

عملگرهای پایه در سیستم های فازی

منطق فازی ، همچون منطق کلاسیک تعدادی عملگر پایه دارد. مثلاً در منطق کلاسیک از عملگرهای AND و ‌OR و‌NOT استفاده می‌شود که دانش آموزان رشته ریاضی فیزیک در دبیرستان با آن‌ها آشنا می‌شوند. در منطق فازی معادل همین عملگرها وجود دارد که به آن‌ها عملگرهای <زاده> می‌گویند. این عملگرها به صورت زیر تعریف می‌شوند: (فرمول ۲)

به عنوان مثال ترکیب AND دو متغیر x و y عبارت است از کمینه مقادیر (‌u‌(x و (‌u(y. به عبارت ساده‌تر، آنجا که هم x  و y از نظر فازی”صحیح” باشند، همزمان مقادیر (‌u‌(x و (‌u(y به کمترین مقدار خود می‌رسند.

سیستم های خبره (Expert Systems)

در یک تعریف کلی می‌توان گفت سیستم های خبره یا Expert System، برنامه‌های کامپیوتری‌ هستند که نحوه تفکر یک متخصص در یک زمینه خاص را شبیه‌سازی می‌کنند. در واقع این نرم‌افزارها، الگوهای منطقی‌ای را که یک متخصص بر اساس آن‌ها تصمیم‌گیری می‌کند، شناسایی می‌نمایند و سپس بر اساس آن الگوها، مانند انسان‌ها تصمیم‌گیری می‌کنند.

سیستم های خبره

سیستم های خبره

یکی از اهداف هوش مصنوعی، فهم هوش انسانی با شبیه‌سازی آن توسط برنامه‌های کامپیوتری است. البته بدیهی است که “هوش‌”‌ را می‌توان به بسیاری از مهارت‌های مبتنی بر فهم، از جمله توانایی تصمیم‌گیری، یادگیری و فهم زبان تعمیم داد و از این‌رو واژه‌ای کلی محسوب می‌شود.

حل مسئله بوسیله سیستم های خبره

بیشتر دستاوردهای هوش مصنوعی در زمینه تصمیم‌گیری و حل مسئله بوده است که اصلی‌ترین موضوع سیستم‌های خبره را شامل می‌شوند. به آن نوع از برنامه‌های هوش مصنوعی که به سطحی از خبرگی می‌رسند که می‌توانند به جای یک متخصص در یک زمینه خاص تصمیم‌گیری کنند، Expert Systems یا سیستم‌های خبره گفته می‌شود. این سیستم‌ها برنامه‌هایی هستند که پایگاه دانش آن‌ها انباشته از اطلاعاتی است که انسان‌ها هنگام تصمیم‌گیری درباره یک موضوع خاص، براساس آن‌ها تصمیم می‌گیرند. روی این موضوع باید تأکید کرد که هیچ‌یک از سیستم‌های خبره‌ای که تا‌کنون طراحی و برنامه‌نویسی شده‌اند، همه‌منظوره نبوده‌اند و تنها در یک زمینه محدود قادر به شبیه‌سازی فرآیند تصمیم‌گیری انسان هستند.

به محدوده اطلاعاتی از الگوهای خِبرگی انسان که به یک سیستم خبره منتقل می‌شود Task Domain گفته می‌شود. این محدوده، سطح خبرگی یک  سیستم خبره را مشخص می‌کند و نشان می‌دهد ‌که آن سیستم خبره برای چه کارهایی طراحی شده است. سیستم خبره با این Task ها یا وظایف می‌تواند کارهایی چون برنامه‌ریزی، زمانبندی، و طراحی را در یک حیطه تعریف شده انجام دهد.

به روند ساخت یک سیستم خبره، Knowledge Engineering  یا مهندسی دانش گفته می‌شود. یک مهندس دانش باید اطمینان حاصل کند که سیستم خبره طراحی شده، تمام دانش مورد نیاز برای حل یک مسئله را دارد. طبیعتاً در غیراین‌صورت، تصمیم‌های سیستم خبره قابل اطمینان نخواهند بود.

ساختار یک سیستم خبره

هر سیستم خبره از دو بخش مجزا ساخته شده است: پایگاه دانش و موتور تصمیم‌گیری.
پایگاه دانش یک سیستم خبره از هر دو نوع دانش مبتنی بر حقایق ‌(Factual) و نیز دانش غیرقطعی (Heuristic)  استفاده می‌کند. Factual Knowledge، دانش حقیقی یا قطعی نوعی از دانش است که می‌توان آن را در حیطه‌های مختلف به اشتراک گذاشت و تعمیم داد؛ چراکه درستی آن قطعی است.

در سوی دیگر، Heuristic knowledge قرار دارد که غیرقطعی‌تر و بیشتر مبتنی بر برداشت‌های شخصی است. هرچه حدس‌ها یا دانش هیورستیک یک سیستم خبره بهتر باشد، سطح خبرگی آن بیشتر خواهد بود و در شرایط ویژه، تصمیمات بهتری اتخاذ خواهد کرد.

دانش مبتنی بر ساختار Heuristic در سیستم‌های خبره اهمیت زیادی دارد این نوع دانش می‌تواند به تسریع فرآیند حل یک مسئله کمک کند .

البته یک مشکل عمده در ارتباط با به کارگیری دانشHeuristic آن است که نمی‌توان در حل همه مسائل از این نوع دانش استفاده کرد. به عنوان نمونه، نمودار (شکل ۱) به خوبی نشان می‌دهد که جلوگیری از حمل سموم خطرناک از طریق خطوط هوایی با استفاده از روش Heuristic امکانپذیر نیست.

اطلاعات این بخش از سیستم خبره از طریق مصاحبه با افراد متخصص در این زمینه تامین می‌شود. مهندس دانش یا مصاحبه‌کننده، پس از سازمان‌دهی اطلاعات جمع‌آوری‌شده از متخصصان یا مصاحبه شوندگان، آ‌ن‌ها را به قوانین قابل فهم برای کامپیوتر به صورت (If-Then) موسوم به قوانین ساخت (Production Rules) تبدیل می‌کند.

موتور تصمیم‌گیری سیستم خبره را قادر می‌کند با استفاده از قوانین پایگاه دانش، پروسه تصمیم‌گیری را انجام دهد. برای نمونه، اگر پایگاه دانش قوانینی به صورت  زیر داشته باشد:

  • دفتر ماهنامه شبکه در تهران قرار دارد.
  • تهران در ایران قرار دارد.

سیستم خبره می‌تواند به قانون زیر برسد:

  • ‌ دفتر ماهنامه شبکه در ایران قرار دارد.

استفاده از  منطق فازی

موضوع مهم دیگر در ارتباط با سیستم‌های خبره، پیوند و ارتباط آن با دیگر شاخه‌های هوش مصنوعی است. به بیان روشن‌تر، برخی از سیستم‌های خبره از Fuzzy Logic یا منطق فازی استفاده می‌کنند. در منطق غیرفازی تنها دو ارزش درست (True) یا نادرست (False) وجود دارد. چنین منطقی نمی‌تواند چندان کامل باشد؛ چراکه فهم و پروسه تصمیم‌گیری انسان‌ها در بسیاری از موارد، کاملا قطعی نیست و بسته به زمان و مکان آن، تا حدودی درست یا تا حدودی نادرست است. در خلال سال‌های ۱۹۲۰ و ۱۹۳۰، Jan Lukasiewicz فیلسوف لهستانی منطقی را مطرح کرد که در آن ارزش یک قانون می‌تواند بیشتر از دو مقدار ۰ و ۱ یا درست و نادرست باشد. سپس پروفسور لطفی‌زاده نشان داد که منطق Lukasiewicz را می‌توان به صورت “درجه درستی” مطرح کرد. یعنی به جای این‌که بگوییم: “این منطق درست است یا نادرست؟” بگوییم: “این منطق چقدر درست یا چقدر نادرست است؟”

از منطق فازی در مواردی استفاده می‌شود که با مفاهیم مبهمی چون “سنگینی”، “سرما”، “ارتفاع” و از این قبیل مواجه شویم. این پرسش را در نظر بگیرید : “وزن یک شیء ۵۰۰ کیلوگرم است، آیا این شیء سنگین است؟” چنین سوالی یک سوال مبهم محسوب می‌شود؛ چراکه این سوال مطرح می‌شود که “از چه نظر سنگین؟” اگر برای حمل توسط یک انسان بگوییم، بله سنگین است. اگر برای حمل توسط یک اتومبیل مطرح شود، کمی سنگین است، ولی اگر برای حمل توسط یک هواپیما مطرح شود سنگین نیست.

در اینجاست که با استفاده از منطق فازی می‌توان یک درجه درستی برای چنین پرسشی در نظر گرفت و بسته به شرایط گفت که این شیء کمی سنگین است. یعنی در چنین مواردی گفتن این‌که این شیء سنگین نیست
(False) یا سنگین است (True) پاسخ دقیقی نیست.

مزایا و محدودیت‌های سیستم‌های خبره

دستاورد سیستم های خبره را می‌توان صرفه‌جویی در هزینه‌ها و نیز تصمیم‌گیری‌های بهتر و دقیق‌تر و بسیاری موارد تخصصی‌تر دیگر عنوان کرد. استفاده از سیستم‌های خبره برای شرکت‌ها می‌تواند صرفه‌جویی به همراه داشته باشد.

در زمینه تصمیم‌گیری نیز گاهی می‌توان در شرایط پیچیده، با بهره‌گیری از چنین سیستم‌هایی تصمیم‌های بهتری اتخاذ کرد و جنبه‌های پیچیده‌ای را در مدت زمان بسیار کمی مورد بررسی قرار داد که تحلیل آنها به روزها زمان نیاز دارد.

مزایای‌ سیستم‌های‌ خبره‌ را می‌توان‌ به‌ صورت‌ زیر دسته‌بندی‌ کرد:

  1. افزایش قابلیت‌ دسترسی‌: تجربیات‌ بسیاری‌ از طریق‌ کامپیوتر دراختیار قرار می‌گیرد و به‌ طور ساده‌تر می‌توان‌ گفت‌ یک‌ سیستم‌ خبره‌،تولید انبوه‌ تجربیات‌ است‌.
  2. کاهش‌هزینه‌: هزینه‌کسب‌تجربه‌برای‌کاربربه‌طورزیادی‌کاهش‌می‌یابد.
  3. کاهش‌ خطر: سیستم‌ خبره‌ می‌تواند در محیطهایی‌ که‌ ممکن‌ است‌برای‌ انسان‌ سخت‌ و خطرناک‌ باشد نیز بکار رود.
  4. دائمی‌ بودن‌: سیستم‌های‌ خبره‌ دائمی‌ و پایدار هستند. بعبارتی‌ مانندانسان‌ها نمی‌میرند و فنا ناپذیرند.
  5. تجربیات‌ چندگانه‌: یک‌ سیستم‌ خبره‌ می‌تواند مجموع‌ تجربیات‌ وآگاهی‌های‌ چندین‌ فرد خبره‌ باشد.
  6. افزایش‌ قابلیت‌ اطمینان‌: سیستم‌های‌ خبره‌ هیچ‌ وقت‌ خسته‌ وبیمار نمی‌شوند، اعتصاب‌ نمی‌کنند و یا علیه‌ مدیرشان‌ توطئه‌ نمی‌کنند، درصورتی‌ که‌ اغلب‌ در افراد خبره‌ چنین‌ حالاتی‌ پدید می‌آید.
  7. قدرت‌ تبیین‌ (Explanation): یک‌ سیستم‌ خبره‌ می‌تواند مسیر و مراحل‌استدلالی‌ منتهی‌ شده‌ به‌ نتیجه‌گیری‌ را تشریح‌ نماید. اما افراد خبره‌ اغلب‌اوقات‌ بدلایل‌ مختلف‌ (خستگی‌، عدم‌ تمایل‌ و…) نمی‌توانند این‌ عمل‌ رادر زمانهای‌ تصمیم‌گیری‌ انجام‌ دهند. این‌ قابلیت‌، اطمینان‌ شما را در موردصحیح‌ بودن‌ تصمیم‌گیری‌ افزایش‌ می‌دهد.
  8. پاسخ‌دهی‌سریع‌: سیستم‌های‌خبره‌،سریع‌ودراسرع‌وقت‌جواب‌می‌دهند.
  9. پاسخ‌دهی‌ در همه‌ حالات‌: در مواقع‌ اضطراری‌ و مورد نیاز،ممکن‌ است‌ یک‌ فرد خبره‌ بخاطر فشار روحی‌ و یا عوامل‌ دیگر، صحیح‌تصمیم‌گیری‌ نکند ولی‌ سیستم‌ خبره‌ این‌ معایب‌ را ندارد.
  10. پایگاه‌ تجربه‌: سیستم‌ خبره‌ می‌تواند همانند یک‌ پایگاه‌ تجربه‌عمل‌ کند وانبوهی‌ از تجربیات‌ را در دسترس‌ قرار دهد.
  11. آموزش‌ کاربر: سیستم‌ خبره‌ می‌تواند همانند یک‌ خودآموز هوش‌(Intelligent Tutor) عمل‌ کند. بدین‌ صورت‌ که‌ مثالهایی‌ را به‌ سیستم‌ خبره‌می‌دهند و روش‌ استدلال‌ سیستم‌ را از آن‌ می‌خواهند.
  12. سهولت‌ انتقال‌ دانش‌: یکی‌ از مهمترین‌ مزایای‌ سیستم‌ خبره‌،سهولت‌ انتقال‌ آن‌ به‌ مکان‌های‌ جغرافیایی‌ گوناگون‌ است‌. این‌ امر برای‌توسعه‌کشورهایی‌که‌ استطاعت‌ خرید دانش‌ متخصصان‌راندارند،مهم‌است‌.

محدودیت های سیستم های خبره

از سوی دیگر، به‌کارگیری سیستم‌های خبره محدودیت‌های خاصی دارد. به عنوان نمونه، این سیستم‌ها نسبت به آنچه انجام می‌دهند، هیچ “حسی” ندارند.  چنین سیستم‌هایی نمی‌توانند خبرگی خود را به گستره‌های وسیع‌تری تعمیم دهند؛ چراکه تنها برای یک منظور خاص طراحی شده‌اند و پایگاه دانش آن‌ها از دانش متخصصان آن حوزه نشات گرفته و از این‌رو محدود است.

چنین سیستم‌هایی از آنجا که توسط دانش متخصصان تغذیه اطلاعاتی شده‌اند، در صورت بروز برخی موارد پیش‌بینی نشده، نمی‌توانند شرایط جدید را به درستی تجزیه و تحلیل نمایند.

کاربرد سیستم‌های خبره‌

از سیستم‌های خبره در بسیاری از حیطه‌ها از جمله برنامه‌ریزی‌های تجاری، سیستم‌های امنیتی، اکتشافات نفت و معادن، مهندسی ژنتیک، طراحی و ساخت اتومبیل، طراحی لنز دوربین و زمانبندی برنامه پروازهای خطوط هوایی استفاده می‌شود. دو نمونه از کاربردهای این سیستم‌ها در ادامه توضیح داده‌شده‌اند.

  • ‌ طراحی و زمانبندی‌

 سیستم‌هایی که در این زمینه مورد استفاده قرار می‌گیرند، چندین هدف پیچیده و تعاملی را مورد بررسی قرار می‌دهند تا جوانب کار را روشن کنند و به اهداف مورد نظر دست یابند یا بهترین گزینه را پیشنهاد دهند. بهترین مثال از این مورد، زمانبندی پروازهای خطوط هوایی، کارمندان و گیت‌های یک شرکت حمل و نقل هوایی است.

‌●تصمیم‌گیری‌های مالی‌

 صنعت خدمات مالی یکی از بزرگ‌ترین کاربران سیستم‌های خبره است. نرم‌افزارهای پیشنهاددهنده نوعی از سیستم‌های خبره هستند که به عنوان مشاور بانکداران عمل می‌کنند. برای نمونه، با بررسی شرایط یک شرکت متقاضی وام از یک بانک تعیین می‌کند که آیا پرداخت این وام به شرکت برای بانک مورد نظر صرفه اقتصادی دارد یا نه. همچنین شرکت‌های بیمه برای بررسی میزان خطرپذیری و هزینه‌های موارد مختلف، از این سیستم‌ها استفاده می‌کنند.

معرفی چند سیستم خبره مشهور

از نخستین سیستم‌های خبره می‌توان به Dendral اشاره کرد که در سال ۱۹۶۵ توسط Edward Feigenbaum و Joshun Lederberg پژوهشگران هوش مصنوعی در دانشگاه استنفورد ساخته شد.

وظیفه این برنامه کامپیوتری، تحلیل‌های شیمیایی بود. ماده مورد آزمایش می‌توانست ترکیبی پیچیده از کربن، هیدروژن و نیتروژن باشد. Dendral می‌توانست با بررسی آرایش و اطلاعات مربوط به یک ماده، ساختار مولکولی آن را شبیه‌سازی کند. کارکرد این نرم‌افزار چنان خوب بود که می‌توانست با یک متخصص رقابت کند.

از دیگر سیستم‌های خبره مشهور می‌توان به MYCIN اشاره کرد که در سال ۱۹۷۲ در استنفورد طراحی شد. MYCIN برنامه‌ای بود که کار آن تشخیص عفونت‌های خونی با بررسی اطلاعات به دست آمده از شرایط جسمی بیمار و نیز نتیجه آزمایش‌های او بود.

برنامه به گونه‌ای طراحی شده بود که در صورت نیاز به اطلاعات بیشتر، با پرسش‌هایی آن‌ها را درخواست می‌کرد تا تصمیم‌گیری بهتری انجام دهد؛ پرسش‌هایی چون “آیا بیمار اخیرا دچار سوختگی شده است؟” (برای تشخیص این‌که آیا عفونت خونی از سوختگی نشات گرفته یا نه. MYCIN ( گاه می‌توانست نتایج آزمایش را نیز از پیش حدس بزند.

سیستم های خبره دیگر در این زمینه Centaur بود که کار آن بررسی آزمایش‌های تنفسی و تشخیص بیماری‌های ریوی بود.
یکی از پیشروان توسعه و کاربرد سیستم‌های خبره، سازمان‌های فضایی هستند که برای مشاوره و نیز بررسی شرایط پیچیده و صرفه‌جویی در زمان و هزینه چنین تحلیل‌هایی به این سیستم‌ها روی آورده‌اند.

Marshall Space Flight Center) MSFC) یکی از مراکز وابسته به سازمان فضایی ناسا از سال ۱۹۹۴ در زمینه توسعه نرم‌افزارهای هوشمند کار می‌کند که هدف آن تخمین کمّ و کیف تجهیزات و لوازم مورد نیاز برای حمل به فضا است.
این برنامه‌های کامپیوتری با پیشنهاد راهکارهایی در این زمینه از بار کاری کارمندان بخش‌هایی چون ISS (ایستگاه فضایی بین المللی)  می‌کاهند و به گونه‌ای طراحی شده‌اند که مدیریت‌پذیرند و بسته به شرایط مختلف، قابل تعریف هستند.
مرکز فضایی MSFC، توسط فناوری ویژه خود موسوم به ۲G به ایجاد برنامه‌های ویژه کنترل هوشمندانه و سیستم‌های مانیتورینگ خطایاب می‌پردازد. این فناوری را می‌توان هم در سیستم‌های لینوکسی و هم در سیستم‌های سرور مبتنی بر ویندوز مورد استفاده قرار داد .

و در پایان …

آنچه در نهایت می‌توان گفت آن است که یکی از مزیت‌های سیستم های خبره این است که می‌توانند در کنار متخصصان انسانی مورد استفاده قرار بگیرند که ماحصل آن تصمیمی مبتنی بر تخصص انسانی و دقت ماشینی است. این فناوری از دید تجاری نیز برای توسعه‌دهندگان آن سودآور است.

هم‌اکنون شرکت‌های بسیاری به فروش سیستم‌های خبره و پشتیبانی از مشتریان محصولات خود می‌پردازند. درآمد یک شرکت کوچک فعال در زمینه فروش چنین محصولاتی می‌تواند سالانه بالغ بر پنج تا بیست میلیون دلار باشد. بازار فروش و پشتیبانی سیستم‌های خبره در سراسر جهان نیز سالانه به صدها میلیون دلار می‌رسد.

شاخه‌های علم هوش مصنوعی

 امروزه علم هوش مصنوعی به واقعیت نزدیک شده است و تقریباً می‌توان گفت وجود دارد، اما دلایل اساسی متعددی وجود دارند که نشان می‌دهند چرا هنوز شکل تکامل یافته‌ هوشی که تورینگ تصور می‌کرد، به وقوع نپیوسته است. به طور کلی خود نظریه تورینگ مخالفانی جدی دارد. بعضی از این منتقدان اصلا‌ً هوش ماشینی را قبول ندارند و برخی دیگر صرفاً کارآمدی آزمون تورینگ را برای اثبات هوشمندی زیر سؤال می‌برند.

علم هوش مصنوعی

علم هوش مصنوعی

شبیه سازی درعلم  هوش مصنوعی

یکی از مهم‌ترین مباحث مطرح در این زمینه، موضوع شبیه‌سازی است. غالباً پرسیده می‌شود آیا صرف این‌که ماشینی بتواند نحوه صحبت کردن انسان را شبیه‌سازی کند، به معنی آن است که هوشمند است؟ به عنوان مثال، شاید شما هم درباره روبات‌های نرم‌افزاری که می‌توانند چت کنند (Chatter Bots) چیزهایی شنیده باشید. این روبات‌ها از روش‌های تقلیدی استفاده می‌کنند و به تعبیری، نمونه مدرن و اینترنتی آزمون تورینگ هستند.

مثلاً روبات ELIZA یکی از این‌هاست. این روبات را ژوزف وایزن بام، یکی دیگر از پژوهشگران‌ نامدار این حوزه اختراع کرد. الیزا در برخی مکالمات ساده می‌تواند طرف مقابل خود را به اشتباه بیندازد. طوری که مخاطب ممکن است فکر کند درحال گپ زدن با یک انسان است. البته الیزا هنوز نتوانسته است آزمون تورینگ را با موفقیت پشت سر بگذارد. با این حال تکنیک‌های شبیه‌سازی مورد انتقاد گروهی از دانشمندان است.

یکی از مشهورترین انتقادات در این زمینه را فیلسوفی به نام جان سیرل (John Searle) مطرح کرده است. او معتقد است بحث هوشمندی ماشین‌های غیربیولوژیک اساساً بی‌ربط است و برای اثبات ادعای خود مثالی می‌آورد که در مباحث تئوریک هوش مصنوعی <بحث اتاق چینی> نامیده می‌شود. سیرل ابتدا نقد خود درباره هوش ماشینی را در ۱۹۸۰ مطرح کرد و سپس آن در مقاله کامل‌تری که در ۱۹۹۰ منتشر کرد، بسط داد.

مفهوم هوشمندی در هوش مصنوعی

ماجرای اتاق چینی به این صورت است: فرض کنید داخل اتاقی یک نفر نشسته است و کتابی از قواعد سمبول‌های زبان چینی در اختیار دارد. برای این فرد عبارات – سمبول‌‌های – چینی روی کاغذ نوشته می‌شود و از زیر درِ اتاق به داخل فرستاده می‌شود. او باید با مراجعه به کتاب قواعد پاسخ مناسب را تهیه کند و روی کاغذ پس بفرستد. اگر فرض کنیم کتاب مرجع مورد نظر به اندازه کافی کامل است، این فرد می‌تواند بدون این‌که حتی معنی یک نماد از سمبول‌های زبان چینی را بفهمد، به پرسش‌ها پاسخ دهد. آیا می‌توان به این ترتیب نتیجه گرفت که پاسخ دهنده هوشمند است؟

استدلال اصلی این منتقد و دیگر منتقدان موضوع شبیه‌سازی این است که می‌توان ماشینی ساخت (مثلاً یک نرم‌افزار لغتنامه) که عبارات و اصطلاحات را ترجمه کند. یعنی ماشینی که کلمات و سمبول‌های ورودی را دریافت و سمبول‌ها و کلمات خروجی را تولید کند؛ بدون این‌که خود ماشین معنی و مفهوم این سمبول‌ها را درک کند. بنابراین آزمون تورینگ حتی در صورت موفقیت نیز نمی‌تواند ثابت کند که یک ماشین هوشمند است .

ماشین‌ها بتوانند با دنیای پیرامون خود کنش و واکنش داشته باشند، آنگاه می‌توانند فکر کنند. منظور این است که کامپیوترها نیز مانند ما دارای حس بینایی، شنوایی، لامسه و حس‌های دیگر باشند. در این صورت، ترکیب همزمان ” پاسخ‌های تقلیدی ” با ” واکنش مناسب به محیط ” یعنی همان ” هوشمندی ” اتفاقاً کسی مانند جان سیرل نیز تفکرات مشابهی دارد؛ با این تفاوت که به طور خاص او شکل ایده‌آل کنش و واکنش مورد نیاز را همان تعامل بیولوژیکی می‌داند.

اشکالات وارد بر آزمون تورینگ

انتقادات دیگری نیز به آزمون تورینگ وارد می‌شود. ازجمله این‌که ممکن است یک ماشین هوشمند باشد، ولی نتواند همچون انسان ارتباط برقرار کند. دیگر این‌که، در آزمون تورینگ فرض می‌شود که انسان مورد آزمایش – یکی از دو نفری که داخل اتاق در بسته به سؤالات پاسخ می‌دهد – به اندازه کافی هوشمند است. در حالی که با استناد به استدلال خود تورینگ می‌توان نتیجه گرفت که خیلی از افراد مانند بچه‌ها و افراد بیسواد در این آزمون مردود می‌شوند؛ نه به دلیل هوشمندی ماشین، بلکه به دلیل نداشتن مهارت کافی در ارتباط‌گیری از طریق مکاتبه.

مسئله دیگری که در بحث  علم هوش مصنوعی اهمیت دارد، موضوع <قالب و محتوا> است. منظور از قالب یا Context در اینجا، ظرفی است که محتوا داخل آن قرار می‌گیرد.

نقش محتوا در هوشمندی انسان ها

یکی از پایه‌های هوشمندی انسان توجهی است که او به قالب محتوا – و نه صرفاً خود محتوا – دارد. به عنوان مثال، وقتی می‌گوییم “شیر”، این کلمه به تنهایی معانی متفاوتی دارد، ولی هنگامی که همین واژه داخل یک جمله قرار می‌گیرد، فقط یک معنی صحیح دارد. انسان می‌تواند معانی کلمات را نه فقط به صورت مجرد، بلکه با دنبال کردن نحوه وابستگیشان به جمله تشخیص دهد. مشابه همین هوشمندی، در تمام حس‌های پنجگانه انسان وجود دارد. به عنوان مثال، از نظر علمی ثابت شده است که گوش انسان می‌تواند هنگام توجه به صحبت‌های یک انسان دیگر در محیطی شلوغ، کلمات و عباراتی را که نمی‌شنود، خودش تکمیل کند یا چشم انسان می‌تواند هنگام مشاهده یک تصویر، قسمت‌های ناواضح آن را با استفاده از دانسته‌های بصری قبلی خود تکمیل کند.

از این رو کارشناسان معتقدند، دانش پیش‌زمینه یا ” آرشیو ذهنی” یک موجود هوشمند نقش مؤثری در هوشمندی او بازی می‌کند. در حقیقت منشأ پیدایش برخی از شاخه‌های مدرن و جدید دانش هوش مصنوعی همچون ” سیستم‌های خبره ” و ” شبکه‌های عصبی ” همین موضوع است و اساسا با این هدف پدید آمده‌اند که بتوانند به ماشین قدرت آموختن و فراگیری بدهند؛ هرچند که هر یک از این شاخه‌ها، از پارادایم متفاوتی برای آموزش به ماشین استفاده می‌کنند و همین تفاوت‌ها مبنا و اساس دو جریان فکری عمده در محافل علمی مرتبط با هوش مصنوعی را پدید آورده‌اند.

شاخه‌های علم هوش مصنوعی‌

امروزه علم هوش مصنوعی به دو دسته اصلی تقسیم می‌شود: یکی هوش مصنوعی سمبولیک یا نمادین (Symbolic AI) و دیگری هوش غیرسمبولیک که پیوندگرا (Connection AI) نیز نامیده می‌شود.

علم هوش مصنوعی سمبولیک از رهیافتی مبتنی بر محاسبات آماری پیروی می‌کند و اغلب تحت عنوان “یادگیری ماشین” یا (Machine Learning) طبقه‌بندی می‌شود. هوش سمبولیک می‌کوشد سیستم و قواعد آن را در قالب سمبول‌ها بیان کند و با نگاشت اطلا‌عات به سمبول‌ها و قوانین به حل مسئله بپردازد. در میان معروف‌ترین شاخه‌های هوش مصنوعی سمبولیک می‌توان به سیستم‌های خبره (Expert Systems) و شبکه‌های Bayesian اشاره کرد.

یک سیستم خبره می‌تواند حجم عظیمی از داده‌ها را پردازش نماید و بر اساس تکنیک‌های آماری، نتایج دقیقی را تهیه کند. شبکه‌های Bayesian یک تکنیک محاسباتی برای ایجاد ساختارهای اطلاعاتی و تهیه استنتاج‌های منطقی از روی اطلاعاتی است که به کمک روش‌های آمار و احتمال به دست‌ آمده‌اند. بنابراین در هوش سمبولیک، منظور از “یادگیری ماشین” استفاده از الگوریتم‌های تشخیص الگوها، تحلیل و طبقه‌بندی اطلاعات است.

علم هوش مصنوعی سمبولیک

این گرایش از علم هوش مصنوعی ، بیشتر بر مدل سازی شناخت اعمال تأکید دارد و چندان خود را به قابلیت تعمق در بیولوژیک سیستم های ارائه شده مقید نمی کند.Case-Based Reasoning یکی از گرایش های فعال در این شاخه می باشد . به عنوان مثال روند استدلال توسط یک پزشک هنگام تشخیص یک بیماری کاملاً شبیه به CBR می باشد به این ترتیب که پزشک در ذهن خود تعداد بسیاری زیادی از شواهد بیماریهای شناخته شده را دارد و تنها باید مشاهدات خود را با نمونه های موجود در ذهن خویش تطبیق داده ، شبیه ترین نمونه را به عنوان بیماری بیابد . به این ترتیب مشخصات ، نیازمندی ها و توانائیهای CBR به عنوان یک چارچوب کلی پژوهش در هوش مصنوعی مورد توجه قرار گرفته است.

علم هوش مصنوعی پیوندگرا

اما علم هوش مصنوعی پیوندگرا متکی بر یک منطق استقرایی است و از راه حل “آموزش/ بهبود سیستم از طریق تکرار” بهره‌ می‌گیرد. این آموزش‌ها نه بر اساس نتایج و تحلیل‌های دقیق آماری، بلکه مبتنی بر شیوه آزمون و خطا و <یادگیری از راه تجربه> است. در علم هوش مصنوعی  پیوندگرا، قواعد از ابتدا در اختیار سیستم قرار نمی‌گیرد، بلکه سیستم از طریق تجربه، خودش قوانین را استخراج می‌کند. متدهای ایجاد شبکه‌های عصبی (Neural Networks) و نیز به‌کارگیری منطق فازی (Fuzzy Logic) در این دسته قرار می‌گیرند.

پیوندگرایی (Connectionism) هوشمندی را تنها حاصل کار موازی و هم‌زمان و در عین حال تعامل تعداد بسیار زیادی اجزای کاملاً ساده به هم مرتبط می‌داند.

شبکه های عصبی و هوش مصنوعی

شبکه‌های عصبی که از مدل شبکه عصبی ذهن انسان الهام گرفته‌اند امروزه دارای کاربردهای کاملاً علمی و گسترده تکنولوژیک شده‌اند و کاربرد آن در زمینه‌های متنوعی مانند سیستم‌های کنترلی، رباتیک، تشخیص متون، پردازش تصویر،… مورد بررسی قرار گرفته است.

علاوه بر این کار بر روی توسعه سیستم‌های هوشمند با الهام از طبیعت (هوشمندی‌های ـ غیر از هوشمندی انسان) اکنون از زمینه‌های کاملاً پرطرفدار در هوش مصنوعی است.

الگوریتم ژنیتک که با استفاده از ایده تکامل داروینی و انتخاب طبیعی پیشنهاد شده روش بسیار خوبی برای یافتن پاسخ به مسائل بهینه سازیست. به همین ترتیب روش‌های دیگری نیز مانند استراتژی‌های تکاملی نیز (Evolutionary Algorithms) در این زمینه پیشنهاد شده اند.

دراین زمینه هر گوشه‌ای از سازو کار طبیعت که پاسخ بهینه‌ای را برای مسائل یافته است مورد پژوهش قرار می‌گیرد. زمینه‌هایی چون سیستم امنیتی بدن انسان (Immun System) که در آن بیشمار الگوی ویروس‌های مهاجم به صورتی هوشمندانه ذخیره می‌شوند و یا روش پیدا کردن کوتاه‌ترین راه به منابع غذا توسط مورچگان (Ant Colony) همگی بیانگر گوشه‌هایی از هوشمندی بیولوژیک هستند.

برای درک بهتر تفاوت میان این دو شیوه به یک مثال توجه کنید. فرض کنید می‌خواهیم یک سیستم OCR بسازیم. سیستم OCR نرم‌افزاری است که پس از اسکن کردن یک تکه نوشته روی کاغذ می‌تواند متن روی آن را استخراج کند و به کاراکترهای متنی تبدیل نماید.

هوشمندی نرم افزاری

بدیهی است که چنین نرم‌افزاری به نوعی هوشمندی نیاز دارد. این هوشمندی را از دو طریق متفاوت می‌توان فراهم کرد. اگر از روش سمبولیک استفاده کنیم ، قاعدتاً باید الگوی هندسی تمام حروف و اعداد را در حالت‌های مختلف در بانک اطلاعاتی سیستم تعریف کنیم و سپس متن اسکن شده را با این الگوها مقایسه کنیم تا بتوانیم متن را استخراج نماییم. در اینجا الگوهای حرفی-‌عددی یا همان سمبول‌ها پایه و اساس هوشمندی سیستم را تشکیل می‌دهند.

روش دوم یا متد « پیوندگرا »این است که یک سیستم هوشمند غیرسمبولیک درست کنیم و متن‌های متعددی را یک به یک به آن بدهیم تا آرام آرام آموزش ببیند و سیستم را بهینه کند. در اینجا سیستم هوشمند می‌تواند مثلا‌ً یک شبکه عصبی یا مدل مخفی مارکوف باشد. در این شیوه سمبول‌ها پایه هوشمندی نیستند، بلکه فعالیت‌های سلسله اعصاب یک شبکه و چگونگی پیوند میان آن‌ها مبنای هوشمندی را تشکیل می‌دهند.

در طول دهه‌های ۱۹۶۰ و ۱۹۷۰ به دنبال ابداع اولین برنامه نرم‌افزاری موفق در گروه سیستم‌های مبتنی بر دانش(Knowledge-Based) توسط جوئل موزس، سیستم‌های هوش سمبولیک به یک جریان مهم تبدیل شد. ایده و مدل شبکه‌های عصبی ابتدا در دهه ۱۹۴۰ توسط Warren McCulloch و Walter Pitts معرفی شد.

سپس در دهه ۱۹۵۰ کارهای روزنبالت (Rosenblatt) درمورد شبکه‌های دولایه مورد توجه قرارگرفت. در ۱۹۷۴ الگوریتم Back Propagation توسط Paul Werbos معرفی شد، ولی متدولوژی شبکه‌های عصبی عمدتاً از دهه ۱۹۸۰ به این سو رشد زیادی پیدا کرد و مورد استقبال دانشمندان قرار گرفت. منطق فازی ابتدا توسط پروفسور لطفی زاده، در ۱۹۶۵ معرفی شد و از آن زمان به بعد توسط خود او و دیگر دانشمندان دنبال شد.

منطق فازی و هوش مصنوعی

در دهه ۱۹۸۰ تلاش‌های دانشمندان ژاپنی برای کاربردی کردن منطق فازی به ترویج و معرفی منطق فازی کمک زیادی کرد. مثلاً طراحی و شبیه سازی سیستم کنترل فازی برای راه‌آهن Sendai توسط دو دانشمند به نام‌هایYasunobu و Miyamoto در ۱۹۸۵، نمایش کاربرد سیستم‌های کنترل فازی از طریق چند تراشه مبتنی بر منطق فازی در آزمون « پاندول معکوس » توسط Takeshi Yamakawa در همایش بین‌المللی پژوهشگران منطق فازی در توکیو در ۱۹۸۷ و نیز استفاده از سیستم‌های فازی در شبکه مونو ریل توکیو و نیز و معرفی سیستم ترمز ABS مبتنی بر کنترلرهای فازی توسط اتومبیل‌سازی هوندا در همین دهه تاثیر زیادی در توجه مجدد دانشمندان جهان به این حوزه از علم داشت.

البته هنگامی که از گرایش‌های آینده سخن می‌گوییم، هرگز نباید از گرایش‌های ترکیبی غفلت کنیم. گرایش‌هایی که خود را به حرکت در چارچوب شناختی یا بیولوژیک یا منطقی محدود نکرده و به ترکیبی از آنها می‌اندیشند. شاید بتوان پیش‌بینی کرد که چنین گرایش‌هایی فرا ساختارهای (Meta –Structure) روانی را براساس عناصر ساده بیولوژیک بنا خواهند کرد.

هوش مصنوعی چیست؟

هوش مصنوعی (Artificial Intelligence) را باید عرصهٔ پهناور تلاقی و ملاقات بسیاری از دانشها، علوم، و فنون قدیم و جدید دانست. ریشه‌ها و ایده‌های اصلی آن را باید در فلسفه، زبان‌شناسی، ریاضیات، روان‌شناسی، نورولوژی، و فیزیولوژی نشان گرفت و شاخه‌ها، فروع، و کاربردهای گونه‌گونه و فراوان آن را در علوم رایانه، علوم مهندسی، علوم زیست‌شناسی و پزشکی، علوم ارتباطات و زمینه‌های بسیار دیگر.

هوش مصنوعی چیست؟

هوش مصنوعی چیست؟

هوش مصنوعی را به عنوان کوششهایی در پی ساختن رایانه های نظام مند ( سخت افزار و نرم افزار ) که رفتاری شبیه انسان داشته باشند ، بیان می کنند . یک سیستم هوش مصنوعی به راستی نه مصنوعی است و نه هوشمندبلکه دستگاهی است هدف گرا که مسائل را به روش مصنوعی حل می کند ، این سیستم ها بر پایه دانش ، تجربه و الگوهای استدلالی انسان به وجود آمده اند .

اهداف هوش مصنوعی

هدف هوش مصنوعی بطور کلی ساخت ماشینی است که بتواند «فکر» کند. اما برای دسته بندی و تعریف ماشینهای متفکر، می‌بایست به تعریف «هوش» پرداخت. همچنین به تعاریفی برای «آگاهی» و «درک» نیز نیازمندیم و در نهایت به معیاری برای سنجش هوش یک ماشین نیازمندیم.

هنوز تعریف دقیقی که مورد قبول همهٔ دانشمندان این علم باشد برای هوش مصنوعی ارائه نشده‌است، و این امر، به هیچ وجه مایهٔ تعجّب نیست. چرا که مقولهٔ مادر و اساسی‌تر از آن، یعنی خود هوش هم هنوز بطور همه‌جانبه و فراگیر تن به تعریف نداده‌است. در واقع، می‌توان نسل‌هایی از دانشمندان را سراغ گرفت که تمام دوران زندگی خود را صرف مطالعه و تلاش در راه یافتن جوابی به این سؤال عمده نموده‌اند که: هوش چیست؟

اما اکثر تعریف‌هایی که در این زمینه ارایه شده‌اند بر پایه یکی از چهار باور زیر قرار می‌گیرند:

  • سیستم‌هایی که به طور منطقی فکر می‌کنند
  • سیستم‌هایی که به طور منطقی عمل می‌کنند
  • سیستم‌هایی که مانند انسان فکر می‌کنند
  • سیستم‌هایی که مانند انسان عمل می‌کنند

شاید بتوان هوش مصنوعی را این گونه توصیف کرد:«هوش مصنوعی عبارت است از مطالعه این که چگونه کامپیوترها را می‌توان وادار به کارهایی کرد که در حال حاضر انسان‌ها آنها رابهتر انجام می‌دهند»

       تعریف دیگری که از هوش مصنوعی می‌توان ارائه داد به قرار زیر است:

« هوش مصنوعی، شاخه‌ایست از علم کامپیوتر که ملزومات محاسباتی اعمالی همچون ادراک (Perception) ، استدلال (Reasoning) و یادگیری (Learning) را بررسی کرده و سیستمی جهت انجام چنین اعمالی ارائه می‌دهد.»

و در نهایت تعریف سوم هوش مصنوعی از قرار زیر است:

«هوش مصنوعی، مطالعه روش‌هایی است برای تبدیل کامپیوتر به ماشینی که بتواند اعمال انجام شده توسط انسان را انجام دهد.»

ماهیت هوش مصنوعی

بطور کلی ماهیت وجودی هوش به مفهوم جمع آوری اطلاعات، استقرا و تحلیل تجربیات به منظور رسیدن به دانش و یا ارایه تصمیم میباشد. در واقع هوش به مفهوم به کارگیری تجربه به منظور حل مسایل دریافت شده تلقی میشود. هوش مصنویی علم و مهندسی ایجاد ماشینهایی با هوش با به کارگیری از کامپیوتر و الگوگیری از درک هوش انسانی و نهایتا دستیابی به مکانیزم هوش مصنوعی در سطح هوش انسانی میباشد.

در مقایسه هوش مصنوعی با هوش انسانی می توان گفت که انسان قادر به مشاهده و تجزیه و تحلیل مسایل در جهت قضاوت و اخذ تصمیم میباشد در حالی که هوش مصنوعی مبتنی بر قوانین و رویه هایی از قبل تعبیه شده بر روی کامپیوتر میباشد. در نتیجه علی رغم وجود کامپیوترهای بسیار کارا و قوی در عصر حاضر ما هنوز قادر به پیاده کردن هوشی نزدیک به هوش انسان در ایجاد هوشهای مصنوعی نبوده ایم.

روش شناسی در هوش مصنوعی

روش شناسی ( Methodology ) هوش مصنوعی هنوز به عنوان یک نقطه ضعف مورد انتقاد بسیاری از صاحبنظران است ، از نظر برخی از آنان این ضعف یک شکل تکاملی است که به تاریخچه کوتاه علم رایانه مربوط است .

روش های هوش مصنوعی روش هائی هستند که به درد مسائلی می خورند که به خوبی تعریف شده اند ، به طور مثال بسیاری از مسائل محاسباتی معمولی از محاسبات فیزیک گرفته تا محاسبه حقوق و دستمزد از این دسته مسئل هستند که برای آنها الگوریتم مشخصی وجود دارد و نیازی به جستجو برای یافتن حل مسأله نیست .

دانشمندان هوش مصنوعی و به طور کلی دانشمندان رشته های مختلف ، اکنون مایلند با مدل هائی کار کنند که آنها را ” مدل مؤلف ” می نامند.

آنها به دنبال ساخت ماشینی مقلد هستند، که بتواند با شبیه‌سازی رفتارهای میلیونها یاخته مغز انسان، همچون یک موجود متفکر به اندیشیدن بپردازد.

پیچیدگی های موجود در هوش مصنوعی

در بسیاری از موارد، با پوشانیدن و پنهان ساختن جزئیّات فاقد اهمّیّت است که بر پیچیدگی فائق می‌آییم، و می‌توانیم بر روی بخش‌هایی از مسئله متمرکز شویم که مهم‌تر است. تلاش اصلی، در واقع، ایجاد و دستیابی به لایه‌ها و ترازهای بالاتر است ، تا آنجا که، سر‌انجام برنامه‌های کامپوتری درست در همان سطحی کار خواهند کرد که خود انسان‌ها به کار مشغولند.

به یاری پژوهش‌های گسترده دانشمندان علوم مرتبط، هوش مصنوعی از آغاز پیدایش تاکنون راه بسیاری پیموده‌است. در این راستا، تحقیقاتی که بر روی توانایی آموختن زبانها انجام گرفت و همچنین درک عمیق از احساسات، دانشمندان را در پیشبرد این علم، یاری کرده‌است. یکی از اهداف متخصصین، تولید ماشینهایی است که دارای احساسات بوده و دست کم نسبت به وجود خود و احساسات خود آگاه باشند. این ماشین باید توانایی تعمیم تجربیات قدیمی خود در شرایط مشابه جدید را داشته و به این ترتیب اقدام به گسترش دامنه دانش و تجربیاتش کند.

برای نمونه به رباتی هوشمند بیاندیشید که بتواند اعضای بدن خود را به حرکت درآورد، او نسبت به این حرکت خود آگاه بوده و با سعی و خطا، دامنه حرکت خود را گسترش می‌دهد، و با هر حرکت موفقیت آمیز یا اشتباه، دامنه تجربیات خود را وسعت بخشیده و سر انجام راه رفته و یا حتی می‌دود و یا به روشی برای جابجا شدن، دست می‌یابد، که سازندگانش، برای او، متصور نبوده‌اند.

هر چند مثال ما در تولید ماشینهای هوشمند، کمی آرمانی است، ولی به هیچ عنوان دور از دسترس نیست. دانشمندان، عموماً برای تولید چنین ماشینهایی، از تنها مدلی که در طبیعت وجود دارد، یعنی توانایی یادگیری در موجودات زنده بخصوص انسان، بهره می‌برند.

هوش مصنوعی در کنار علوم رایانه

هوشمندی که همواره هدف نهایی دانش رایانه بوده‌است، اکنون در خدمت توسعه علوم رایانه نیز است. زبانهای برنامه نویسی پیشرفته، که توسعه ابزارهای هوشمند را ممکن می‌سازند، پایگاههای داده‌ای پیشرفته، موتورهای جستجو، و بسیاری نرم‌افزارها و ماشینها از نتایج پژوهش‌های هوش مصنوعی بهره می‌برند.

سیستمی که عاقلانه فکر کند. سامانه‌ای عاقل است که بتواند کارها را درست انجام دهد. در تولید این سیستم‌ها نحوه اندیشیدن انسان مد نظر نیست. این سیستم‌ها متکی به قوانین و منطقی هستند که پایه تفکر آنها را تشکیل داده و آنها را قادر به استنتاج و تصمیم گیری می‌نماید. آنها با وجودی که مانند انسان نمی‌اندیشند، تصمیماتی عاقلانه گرفته و اشتباه نمی‌کنند. این ماشینها لزوما درکی از احساسات ندارند. هم اکنون از این سیستم‌ها در تولید عامل‌ها در نرم افزارهای رایانه‌ای، بهره گیری می‌شود. عامل تنها مشاهده کرده و سپس عمل می‌کند.

در این پست به بررسی شاخه های علم هوش مصنوعی پرداخته ایم ،شما می توانید یا انواع شاخه های این علم آشنا شوید.